Always choose the closest answer.

1-4 A researcher has specified the model

response to med = $y = b_0 + b_1 x_1 + b_2 x_2 + \text{error}$

 x_1 = sensitivity to trial dose

 x_2 = body weight

100 subjects are each measured for y, x_1 , x_2 . The resulting data give

$$R = 0.8$$

$$S_{v} = 0.36$$

$$\hat{b}_0 = 0.3$$

$$\hat{b}_1 = 0.6$$

$$S_V = 0.36$$
 $\hat{b}_0 = 0.3$ $\hat{b}_1 = 0.6$ $\hat{b}_2 = -0.2$

1. The fraction of s_y^2 explained by regression. (a) .67 (b) .79 (c) .87 (d) .93 (e) .98 (7) (2) = .8 = .8 = .4

$$2^{2} = .8^{2} = .6$$

2. The regression prediction \hat{y} for the response of a subject having sensitivity 0.7 and weighing 1.78.

- (a) 0.37 b) 0.47 c) 0.57 d) 0.67 e) 0.77

(3)+(6).7+(-.2)1.78=.364

3. Suppose the plot is elliptical. For the group of all subjects having sensitivity 0.7 and weighing 1.78 what is the mean of y-scores?

- a) 0.27 b) 0.37 c) 0.47 d) 0.57 e) 0.67

SAMERS #12. ,3/4

4. Suppose the plot is elliptical. For all subjects having sensitivity 0.7 and weighing 1.78 what is the standard deviation of y-scores?

- a) 0.05 b) 0.15 ¢/ 0.20 d) 0.25 e) 0.3

VI-R2 dy = VI-.82.36

5. Give the estimated margin of error for \overline{y} assuming the sample is random and the FPC is near one.

- FPC is near one.
 a) 0.03 / b) 0.08 c) 0.11 d) 0.18 e) 0.26 1.96 / 34 / 36 = 1.96 / 36 = 0.00

- 6. Range of R. (a) [0, 1] b) [-.5, .5] c) [-.25, .25] d) [-1, 1]
- 7. Casting straight line regression as MLR, what is the matrix of inputs for a straight line regression with (x, y) data points (1, 5), (2, 2), (3, 1)?

- a) $\{\{1, 2, 3\}, \{5, 2, 1\}\}\$ b) $\{\{1, 1, 5\}, \{1, 2, 2\}, \{1, 3, 1\}\}$
- $\chi = 1, 2,3$

(c) $\{\{1,1\},\{1,2\},\{1,3\}\}\$ d) $\{5,2,1\}$

 $Myx = \begin{vmatrix} 1 & 1 \\ 1 & 3 \end{vmatrix}$